(1)
\[ \mbox{原式}= 2 + \int_{-1}^1 2x \sqrt{1-x^2} dx= 2- (1-x^2)^{3/2}\bigg|_{-1}^{1}=2.\](第二个积分根本不需要算,注意到它时对称区间以及奇函数)
(2)
\[ \int_{\frac{1}{\sqrt 2}}^ 1 \frac{\sqrt{1-x^2}}{x^2} dx= - \int_{\frac{1}{\sqrt 2}}^ 1\sqrt{1-x^2} d(\frac 1x) = -\frac{\sqrt{1-x^2} }{x}\bigg|_{\frac 1{\sqrt 2} }^1 - \int_{\frac{1}{\sqrt 2}}^1 \frac{2}{\sqrt{1-x^2}} dx=1-\frac \pi 4.\](这里选择这个方法主要是展示分部积分某些运用,但它并不是最好的办法。想到的原因是看到 $\sqrt{1-x^2}=\frac{-2x}{\sqrt{1-x^2}}$, 正好一次分部后把 $\frac{1}{x^2}$ 这一项消掉,可以看到上一章不定积分里,有题目也利用了这个性质。当然,经典变换依然是最好的办法,比如令 $x=\sin t$ 则
\[ \mbox{原式}= \int_{\pi/4}^{\pi/ 2} \frac{\cos^2 t }{\sin^2 t} dt \]非常容易算,注意换元要换限。) (3) 令 $t=1/x$ 则\[ \int_1 ^{\sqrt 3} \frac{dx}{x^2 \sqrt{1+x^2}} = - \int_1 ^{1/\sqrt 3} \frac{t}{\sqrt{1+t^2}} dt= - \sqrt{1+t^2}\bigg|_{1}^{1/\sqrt 3} =\sqrt 2 -\frac{2}{\sqrt 3}.\](4) \[ \int_0^3 \frac{x}{1+\sqrt{1+x}} dx =-\int_0^3 (1-\sqrt{1+x}) dx =\frac53.\]
(5) 令 $t=\sqrt{e^x -1}$
\[ \int_{0}^{\ln 2} \sqrt{e^x -1} dx= \int_{0}^1 \frac{2t^2}{t^2+1} dt= 2 -2\arctan t \bigg|_0^1 = 2-\frac \pi 2.\] (6) \[\begin{aligned} \int_0 ^3 \arcsin \sqrt{\frac{x}{1+x}} dx = \arcsin \sqrt{\frac{x}{1+x}} \cdot x\bigg|_{0}^3- \int_0^3 \frac{\sqrt x}{2(1+x)} dx = \pi -\int_0^3 \frac{x}{1+x} d(\sqrt x)\\=\pi - \int_0^3 d(\sqrt x) + \int_0^3 \frac 1{1+x} d(\sqrt x)= \pi - \sqrt x \bigg|_0^3+ \arctan \sqrt{ x}\bigg|_{0}^3 =\frac{4\pi}{3}-\sqrt 3.\end{aligned}\](第一行最后一个积分的计算其实就是一个换元法,这里偷懒了。。)
(7)
\[\begin{aligned} \int_{-\pi/2}^{\pi /2} \sqrt{\cos x -\cos^3 x} dx=2\int_{0}^{\pi /2} \sqrt{\cos x -\cos^3 x} dx=2\int^{\pi/2}_{0} \sqrt{\cos x } \sin x dx \\= -\frac43 (\cos x)^{3/2} \bigg|_{0}^{\pi /2 }=\frac43.\end{aligned}\] (8)\[ \int_0^{2n \pi} \sqrt{1-\cos 2x} dx= \sqrt 2 \int_0^{2n \pi} \sqrt{1-\cos^2 x} dx= \sqrt 2 \int_0^{2n \pi} |\sin x| dx\]由于\[ \int_0 ^{2\pi} |\sin x| dx= \int_0^\pi \sin x dx -\int_\pi^{2\pi} \sin x dx =4,\]以及周期性\[ \int_{2(n-1)\pi} ^{2n\pi} |\sin x| dx= \int_{2(n-2)\pi} ^{2(n-1)\pi} |\sin (x+2\pi ) | d(x+2\pi)= \cdots = \int_0 ^{2\pi} |\sin x| dx= 4.\]所以\[\int_0^{2n \pi} \sqrt{1-\cos 2x} dx = \sqrt 2 n \int_0^{2 \pi} |\sin x| dx=4 n\sqrt 2.\]
2. 与课件例题类似
3. (1)\[ \int_0^\pi (1-2x) \cos x dx = \sin x\bigg|_{0}^\pi- 2\int_0^\pi x d(\sin x)= 2\int_0^\pi \sin x dx= 4.\] (2)\[ \int_0^2 |1-x| \sqrt{(x-4)^2} dx = \int_0^1 (1-x) (4-x)dx + \int_{ 1 }^2 (x-1) (4-x) dx= 3.\]
(3)
\[ \int_1^e \sin (\ln x) dx = \sin (\ln x) x \bigg|_1^e - \int_1^e \cos(\ln x ) dx = e\sin 1 -\cos (\ln x) x \bigg|_1^e - \int_1^e \sin (\ln x ) dx\]因此解上式得\[ \int_1^e \sin(\ln x) dx =\frac12(1+e\sin 1 -e\cos 1).\] 4. 5. 先假设 $f(x)$ 为奇函数,下证 $\int_0^x f(t) dt$ 是偶函数. 令 $u=-t$ 则\[ \int_0^{-x} f(t) dt = \int_0^{x} f(-u) d(-u)= -\int_0^{x} f(-u) du= \int_0^{x} f(u) d u,\]由于积分变量的命名无关性,得到\[ \int_0^{-x} f(t) dt =\int_0 ^x f(t) dt.\]类似可证奇函数。 6. 首先根据题设, 令 $M=\max_{2\leq x \leq 4}|f'(x)|$, 由于\[ \int_2^4 f(x) dx = \int_2^3 (f(x)-f(2)) dx + \int_3^4 ( f(x)-f(4) )dx,\]以及拉格朗日中值定理,\[ f(x)-f(2) =f'(\xi_1) (x-2), \quad \xi\in(2,x),\quad f(x)-f(4) = f'(\xi_2) (x-4), \quad \xi_2 \in (x,4).\]因此\[ |\int_2^4 f(x) dx| \leq \int_2^3 |f(x)-f(2)| dx + \int_3^4 | f(x)-f(4) |dx\leq M \int_2^3 (x-2) dx +M \int_3^4 (4-x) dx =M.\]